skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Watkins, James M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Despite its increasing application to estimate magma decompression rates for explosive eruptions, the embayment speedometer has long awaited critical experimental evaluation. We present the first experimental results on the fidelity of natural quartz‐hosted embayments in rhyolitic systems as recorders of magma decompression. We conducted two high pressure‐temperature isobaric equilibrium experiments and 13 constant‐rate, continuous isothermal decompression experiments in a cold‐seal pressure vessel where we imposed rates from 0.005 to 0.05 MPa s−1in both H2O‐saturated and mixed‐volatile (H2O + CO2)‐saturated systems. In both equilibrium experiments, we successfully re‐equilibrated embayment melt to new fluid compositions at 780°C and 150 MPa, confirming the ability of embayments to respond to and record changing environmental conditions. Of the 32 glassy embayments recovered, seven met the criteria previously established for successful geospeedometry and were thus analyzed for their volatile (H2O ± CO2) concentrations, with each producing a good model fit and recovering close to the imposed decompression rate. In one H2O‐saturated experiment, modeling H2O concentration gradients in embayments from three separate crystals resulted in best‐fit decompression rates ranging from 0.012 to 0.021 MPa s−1, in close agreement with the imposed rate (0.015 MPa s−1) and attesting to the reproducibility of the technique. For mixed‐volatile experiments, we found that a slightly variable starting fluid composition (2.4–3.5 wt.% H2O at 150 MPa) resulted in good fits to both H2O + CO2profiles. Overall our experiments provide confidence that the embayment is a robust recorder of constant‐rate, continuous decompression, with the model successfully extracting experimental conditions from profiles representing nearly an order of magnitude variation (0.008–0.05 MPa s−1) in decompression rate. 
    more » « less
  2. Abstract Following rapid decompression in the conduit of a volcano, magma breaks into ash- to block-sized fragments, powering explosive sub-Plinian and Plinian eruptions that may generate destructive pyroclastic falls and flows. It is thus crucial to assess how magma breaks up into fragments. This task is difficult, however, because of the subterranean nature of the entire process and because the original size of pristine fragments is modified by secondary fragmentation and expansion. New textural observations of sub-Plinian and Plinian pumice lapilli reveal that some primary products of magma fragmentation survive by sintering together within seconds of magma break-up. Their size distributions reflect the energetics of fragmentation, consistent with products of rapid decompression experiments. Pumice aggregates thus offer a unique window into the previously inaccessible primary fragmentation process and could be used to determine the potential energy of fragmentation. 
    more » « less